Impedance perspectives on Li-air battery overpotentials

Højberg, Jonathan; McCloskey, Bryan D.; Luntz, Alan C.; Hjelm, Johan; Johansen, Keld; Norby, Poul; Vegge, Tejs

Publication date: 2014

Citation (APA):
IMPEDEANCE PERSPECTIVES ON LI-AIR BATTERY OVERPOTENTIALS

Jonathan Højberg1,2, Bryan D. McCloskey3, Alan C. Luntz3,4, Johan Hjelm1, Keld Johansen2, Poul Norby1, Tejs Vegge1

1DTU Energy Conversion, Frederiksborgvej 399, DK-4000 Roskilde, Denmark, jonnn@dtu.dk.
2Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Kgs. Lyngby, Denmark, 3IBM Almaden Research Center, San Jose, California 95120, United States, 4SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, California 94025

Lithium-air batteries have attracted much attention in recent years because of a potentially high specific energy density and experiments with flat electrodes show that the intrinsic electrochemistry of Lithium-air batteries has a very low overpotential1. In real batteries with a porous electrode, the observed overpotentials are, however, significantly larger2. The origin of the overpotentials at especially sudden death and during charge has been heavily debated in the literature. Among others, arguments proposed are based on modeling1, DEMS measurements2, in-situ TEM3, and conductivity measurements using a redox-mediator combined with ex-situ characterization methods like FTIR and Raman4.

In this presentation, a series of electrochemical impedance spectra measured at different states of charge and current densities will be used to analyze three states of the Lithium-air battery electrochemistry; The discharge plateau, sudden death and the initial stage of the charging process.

By combining the measurements with previous results presented by Bryan D. McCloskey and Alan C. Luntz et al. (ref. 1, 2 and 5 among others), the internal resistance in the battery is related to the measured overpotential. This relation is essential to understand the reactions inside the battery.

References:
[1] Viswanathan et al., \textit{JPCL} 2013, 4, 556-560
[5] Luntz et al., \textit{JPCL} 2013, 4, 3494-3499