A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al$_2$O$_3$/SrTiO$_3$

Yunzhong Chen1, Felix Trier1, Dennis Christensen1, N. H. Andersen2, T. Kasama3, W. Zhang1, S. Linderoth1, and Nini Pryds1

1Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
2Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
3Center for Electron Nanoscopy, Technical University of Denmark, 2800 Lyngby, Denmark

Email: yunc@dtu.dk

Background and motivation

The realization of high-mobility 2DEGs in epitaxially grown heterostructures made of traditional semiconductors is at the heart of present electronics, which has led to a wealth of new physical phenomena as well as new electronic and photonic devices over the past few decades. 2DEGs at the interface between insulating complex oxides not only provide a wealth of opportunities to study mesoscopic physics with strongly correlated electrons confined in nanostructures, but also show promise for multifunctional all-oxide devices with probably even richer behavior than those we experienced in semiconductor devices.

Metallic interface between insulating oxides of Al$_2$O$_3$ and SrTiO$_3$

Exploring 2DEGs at oxide interfaces

1) Oxygen ions redistribution across interface can result in metallic conduction in STO-based heterostructures involving complex oxides with Al, Ti, Zr, and Hf as component elements.
2) Defect engineering of oxygen vacancies, especially interfacial redox reactions with strongly spatial confinement will be a crucial issue for the conductive interface between insulating complex oxides.

High-mobility 2DEGs dominated by interface-stabilized oxygen vacancies

Conclusion

Confined redox reactions in STO-based heterointerfaces: an alternative way to create high-mobility 2D conductivity at oxide interfaces.