Uncertainty in engineering, research, negotiation and adaptive management for water sensitive cities

P. S. Mikkelsen* and G. D. Geldof*, **

*Department of Environmental Engineering (DTU Environment), Technical University of Denmark, Miljøvej, Building 113, DK-2800 Kgs. Lyngby (E-mail: psmi@env.dtu.dk)
**Geldof c.s., Holprijs 2, 8804 RZ, Tzum, the Netherlands (E-mail: govert@geldofcs.nl)

Extended Abstract

A reflexive framework for comprehending, discussing and coping with uncertainty in urban water management is presented, which explains why there are good reasons to perceive and manage uncertainty differently across e.g. the natural, technical, economic, planning and social sciences.

A 2x2 “matrix of decision making” that clearly distinguishes uncertainty/certainty about the problem to be solved (i.e. agreement/disagreement about goals) and about the means to solve the problem (i.e. the knowledge required to achieve the goals) is introduced (Figure 1, upper left, Christensen, 1985) and combined with a concept for characterizing uncertainty using three dimensions (location, level and nature of uncertainty, Figure 1 upper right, Walker et al., 2003). This is then combined with reflections on the appropriate action considering the level and nature of uncertainty characterizing the situation (Figure 1, lower left) and how this connects with the introduced matrix (Figure 1, lower right) and with positivistic as well as constructivist planning approaches.

<table>
<thead>
<tr>
<th>Knowledge (to achieve the goals)</th>
<th>Agreed</th>
<th>Not agreed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rules, predictive design, modelling, optimisation</td>
<td>Negotiation, bargaining, Participation, resource allocation</td>
<td>Lobbyist, mediator, process manager</td>
</tr>
<tr>
<td>Rationalist, regulator, engineer, cost-benefit</td>
<td>Chaos, clarification, reformulation, transition, adaptive management</td>
<td>Charismatic leader, problem finder</td>
</tr>
<tr>
<td>Experimentation, learning, innovation, empirical-iterative design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Researcher, scientist</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goals</th>
<th>Agreed</th>
<th>Not agreed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not agreed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three dimensions of uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of uncertainty</td>
</tr>
<tr>
<td>Context (fleming/system boundaries), model structure, attributes, input, parameters, data and method used for calibration...</td>
</tr>
<tr>
<td>Level of certainty</td>
</tr>
<tr>
<td>Statistical</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Uncertainty</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acting on uncertainty ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
</tr>
<tr>
<td>Scenario uncertainty</td>
</tr>
<tr>
<td>Ignorance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goals</th>
<th>Agreed</th>
<th>Not agreed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not agreed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown</th>
<th>Known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical uncertainty</td>
<td>1</td>
</tr>
<tr>
<td>Scenario uncertainty</td>
<td>2</td>
</tr>
<tr>
<td>Recognized ignorance</td>
<td>3</td>
</tr>
<tr>
<td>Constructivist</td>
<td>4</td>
</tr>
</tbody>
</table>

- Can it be reduced (epistemic) or not (stochastic)?
Figure 1. Overall concepts that will be explained, connected and exemplified in the conference presentation.

Each quadrant in the matrix is an arena for different types of professionals involved in decision making, and is furthermore characterized by one or a few distinct levels of uncertainty: we here distinguish the levels statistical uncertainty, scenario uncertainty, qualitative uncertainty, recognized ignorance and total ignorance, based on Refsgaard et al. (2007). Because the location and nature of uncertainty differs between the quadrants the appropriate management strategy and the role of the water manager as an actor in decision making also differs. The typical arena for an engineer concerned with design, simulation and optimisation is quadrant 1, where uncertainty is statistical and the problems faced can be tamed (to some extent) by reducing uncertainty. Quadrant 2 is the arena for negotiation and resource allocation, which bring the human interaction processes into focus, and Quadrant 3 is the arena for experimentation and learning, where research and science is at focus. These two quadrants are both characterised by scenario uncertainty and qualitative uncertainty, i.e. assumptions can be made about a process or about the future and patterns describing reality can be conceptualised, but there is no basis for assigning probabilities. Completely different skills are needed when uncertainty is large and approaches recognized and even total ignorance (quadrant 4); this is where adaptive management plays an important role and engineering standards and design are less important in the big picture. Quadrant 4 can be characterized as chaotic; projects often alternate between formulating the problem and finding the solution, but it is also where the inherent problem wickedness (Conklin, 2006) can be seen as an opportunity for those who are interested in trying out new ideas.

The framework illustrates how positivistic and constructivist planning approaches are complementary dependant on the location in the 2x2 matrix. This will be exemplified and discussed in the conference presentation using contemporary examples from the field of urban stormwater management, i.e. real time control of urban drainage systems, control of chemical constituents in wet-weather discharges, urban flood risk management and water sensitive urban design. The framework is proposed as a reflexive framework for analysis of decision making processes that make complex situations tangible to practical urban water management.

References

Uncertainty in engineering, research, negotiation and adaptive management for water sensitive cities (tentative slides)

Peter Steen Mikkelsen¹ and Govert Geldof¹,²

¹ DTU Environment, Technical University of Denmark
² Geldof c.s., Holprijp 2,8804 RZ, Tzum, the Netherlands
A draft framework for communicating about uncertainty

- What is often referred to as "uncertainty" actually hides important technical distinctions (EEA, 2001);
- "Any departure from the unachievable ideal of complete determinism”
- A three dimensional concept

Inspired by

Supplemented with thoughts developed to a large extent in collaboration with Govert Geldof, NL, around teaching in *Environmental Management & Ethics* course at DTU.
Three dimensions of uncertainty (Walker et al., 2003)

Location of uncertainty
- Context (framing/system boundaries), model structure, attributes, input, parameters, data and method used for calibration ...

Level of uncertainty

Nature of uncertainty
- Can it be reduced (epistemic) or not (stochastic)?
Uncertainty and decision making (Kristensen, 1985)

Goals

<table>
<thead>
<tr>
<th>Agreed</th>
<th>Not agreed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- Rules, predictive design, modelling, optimisation
 - Rationalist, regulator, engineer, cost-benefit
- Negotiation, bargaining, Participation, resource allocation
 - Lobbyist, mediator, process manager
- Experimentation, learning, innovation, empirical-iterative design
 - Researcher, scientist
- Chaos, clarification, reformulation, transition, adaptive management
 - Charismatic leader, problem finder

Knowledge (to achieve the goals)

- Known
- Unknown
Hard system projects (tame problems)

Soft system projects (wicked problems)

Collect data

Analyse data

Formulate solution

Implement solution

(Conklin, 2006)
Acting on uncertainty ...

<table>
<thead>
<tr>
<th>Level</th>
<th>Nature</th>
<th>Possible action</th>
<th>Scientific paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical uncertainty</td>
<td>Reducible (partly)</td>
<td>Try to reduce it</td>
<td>Positivism Tame problems</td>
</tr>
<tr>
<td>Scenario uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignorance</td>
<td>Irreducible (in practice)</td>
<td>Accept it as a precondition for change</td>
<td>Constructivism Wicked problems</td>
</tr>
</tbody>
</table>
Uncertainty and decision making

Goal Agreed Not agreed

Known

Positivism (tame)
Statistical uncertainty

Scenario uncertainty

Unknown

Lobbyist, mediator, process manager

Recognized ignorance

Constructivism (wicked)

Knowledge (to achieve the goals)

1

2

3

Chaos, clarification, reformulation, transition, adaptive management

Charismatic leader, problem finder

Experimental, learning, innovation

Researcher, scientist
Examples of tools for dealing with uncertainty

- Stochastic state-space modelling for probabilistic forecasting in real time control of urban drainage systems (statistical uncertainty)
- Safety margin in design of urban drainage systems (statistical uncertainty, scenario uncertainty)
- 3PA for communication in Urban flood risk management (qualitative uncertainty, ignorance)

... and more
Storm and Wastewater Informatics (SWI)

See more on http://www.swi.env.dtu.dk
Stochastic state-space modelling

\[dX_t = f(X_t, u_t, t, \theta) dt + \sigma(X_t, u_t, t, \theta) d\omega_t \]
\[Y_k = h(X_k, u_k, t_k, \theta) + e_k, \]

Notation:

- **\(X_t \)**: State variables
- **\(u_t \)**: Input variables
- **\(\theta \)**: Parameters
- **\(Y_k \)**: Output variables
- **\(t \)**: Time
- **\(\omega_t \)**: Standard Wiener process
- **\(e_k \)**: White noise process with \(N(0, \Sigma) \)

Diffusion term (stochastic)
Drift term (deterministic)
Observation noise

System equation
Observation equation
Scenarios don’t need to be related to time (different assumptions)

Ignorance is ignored (we lack methods to deal with it)
Temporal evolution of safety margin in sewer design, Denmark

$Diameter = f (flow, roughness, slope)$

Design level

- Traditional design (Rational Method)
- New design guideline acknowledging unc.
- Dynamic simulation models introduced
- Optimised design, cost minimization
- Legal frame changed, uncertainty discussed
- Safety margin, consciously chosen
- Safety margin, based on experience/practice (unconsciously chosen)
- No safety margin
- Flooding becomes more frequent, climate change becomes a "fact"

Uncertainty analysis, based on
1. statistical unc. (input, parameters)
2. scenario unc. (climate, urbanisation)

1970 2000 2005

Time

DTU Environment
Department of Environmental Engineering
The Three Points Approach (Fratini et al., 2011)

1. Design rain
 - Technical optimization of water system (meeting standards)

2. Extreme rain
 - Urban resilience (cooperation water and urban planners)

3. Little rain
 - Day-to-day values (balancing awareness with pleasure)

- Cost
- Danger to life and structures
- Damage
- Nuisance
Conclusions

- Different levels of uncertainty calls for different management approaches
- "Tame” problems can be managed using statistical methods and positivistic planning approaches. Statistical uncertainty can be quantified using models and sometimes reduced
- "Wicked” problems are characterised by recognised ignorance that cannot be reduced, but patterns can provide useful insights
- Planning for Water Sensitive Cities has many “wicked” characteristics, and constructivist planning based on step-wise learning may be the only useful way ahead
- The developed framework for comprehending, discussing and coping with uncertainty can be used for reflection when aiming to make complex decision situations tangible to practical urban water management