MOLECULAR EPIDEMIOLOGY OF MACROLIDE AND/OR TETRACYCLINE RESISTANT STREPTOCOCCUS AGALACTIAE AND STREPTOCOCCUS UBERIS FROM BOVINE MASTITIS

Márcia Rato1, Ricardo Bexiga2, Carlos Florindo3, Sandro F. Nunes2,4, Lina M. Cavaco2,5, Cristina L. Vilela2, Ilda Santos-Sanches1

1CREM, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; 2CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisboa, Portugal. 3Departamento de Doenças Infecciosas, Instituto Nacional de Saúde, Lisboa, Portugal; 4Presently at Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK, 5Presently at National Food Institute, Faculty of Life Sciences/ Technical University of Denmark, Copenhagen, Denmark

Objectives: To identify macrolide/tetracycline phenotypes and genotypes among Streptococcus agalactiae (Group B Streptococcus, GBS) and S. uberis from bovine subclinical mastitis, relevant for therapeutic policies, and evaluate further molecular features.

Methods: GBS (n=60) and S. uberis (n=30) field isolates from 9 herds in Portugal were characterized by pulsed field gel electrophoresis (PFGE). Resistance to macrolides (erythromycin-E), lincosamides (pirlimycin-PRL), tetracycline-TET, and the constitutive macrolide-lincosamide resistance phenotype (cMLS) was evaluated by disk diffusion. Resistance genes (mefA; ermA; ermB; linB; tetO; tetT; tetS; tetQ; tetK; tetW; tetL) were screened by PCR among all isolates. The C5a peptidase and lmb genes, important virulence factors in human GBS localized in a composite transposon, were screened by PCR among the bovine GBS. Capsular serotyping of GBS was performed by agglutination and by PCR-sequencing the capsule gene cluster. Capsular serotyping of GBS was performed by agglutination and by PCR-sequencing the capsule gene cluster.

Results: A total of four PFGE clusters comprised 50% of the GBS and four PFGE clusters comprised 53% of the S. uberis. Co-resistance to E and PRL (18%-27%) and to TET (57%-60%) was observed in both species. Resistance to PRL and susceptibility to E (LSA phenotype) was found in 27% of S. uberis isolates. Diverse resistance genotypes were found: ermB/tetOTetK in GBS and ermB/tetO or linBltetS in S. uberis. Both C5a peptidase and lmb genes were present in 20% of GBS. Two known molecular serotypes were detected: III-3 (n=1) and V (n=14), and four types (detected among 75% of GBS) showed cpsDEF sequences distinct from those described so far, and most were found to be herd-specific.

Conclusion: A contagious source for both GBS and S. uberis was assessed. Dissemination of antimicrobial-resistance was clonal and by lateral gene transfer. Serotype-specific capsular polysaccharides appear to have evolved in a herd-associated manner. GBS with C5a peptidase and lmb were of capsular serotype V –common in human GBS infection.

297 words

Max: 300 words

Max space (including names and titles): 13,5 cm wide x 16,5 cm high


Presentation: Poster