Young drivers’ perception of adult and child pedestrians in potential street-crossing situations - DTU Orbit (11/02/2019)

Despite overall improvements in road traffic safety, pedestrian accidents continue to be a serious public health problem. Due to lack of experience, limited cognitive and motoric skills, and smaller size, children have a higher injury risk as pedestrians than adults. To what extent drivers adjust their driving behaviour to children's higher vulnerability is largely unknown. To determine whether young male drivers' behaviour and scanning pattern differs when approaching a child and an adult pedestrian in a potential street-crossing situation, sixty-five young (18-24) male drivers' speed, lateral position and eye movements were recorded in a driving simulator. Results showed that fewer drivers responded by slowing down and that drivers had a higher driving speed when approaching a child pedestrian, although the time of the first fixation on both types of pedestrians was the same. However, drivers drove farther away from a child than an adult pedestrian. Additionally, fewer drivers who did not slow down fixated on the speedometer while approaching the child pedestrian. The results show that young drivers behave differently when approaching a child and an adult pedestrian, though not in a way that appropriately accounts for the limitations of a child pedestrian. A better understanding of how drivers respond to different types of pedestrians and why could contribute to the development of pedestrian detection and emergency braking systems.

General information
State: Published
Organisations: Department of Management Engineering, Technology and Innovation Management, Transport DTU, Technical University of Denmark
Contributors: Abele, L., Haustein, S., Møller, M.
Pages: 263-268
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Accident Analysis and Prevention
Volume: 118
ISSN (Print): 0001-4575
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.94 SJR 1.462 SNIP 1.9
Web of Science (2017): Impact factor 2.584
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.24 SJR 1.586 SNIP 2.05
Web of Science (2016): Impact factor 2.685
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.63 SJR 1.228 SNIP 1.78
Web of Science (2015): Impact factor 2.07
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.79 SJR 1.221 SNIP 2.059
Web of Science (2014): Impact factor 2.07
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.2 SJR 1.374 SNIP 2.645
Web of Science (2013): Impact factor 2.571
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.56 SJR 1.326 SNIP 2.246
Web of Science (2012): Impact factor 1.964
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.61 SJR 0.944 SNIP 1.942
Web of Science (2011): Impact factor 1.867
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.17 SNIP 2.285
Web of Science (2010): Impact factor 2.353
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.239 SNIP 1.803
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.315 SNIP 2.22
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.131 SNIP 2.106
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.525 SNIP 2.245
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.021 SNIP 2.344
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.891 SNIP 1.958
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.787 SNIP 1.916
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.584 SNIP 1.466
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.62 SNIP 1.339
Scopus rating (2000): SJR 0.635 SNIP 1.204
Scopus rating (1999): SJR 0.579 SNIP 1.235
Original language: English
Keywords: Driving simulator, Eye movements, Pedestrians, Young male drivers
DOIs: 10.1016/j.aap.2018.03.027
Source: FindIt
Source-ID: 2398554018
Research output: Research - peer-review › Journal article – Annual report year: 2018