X-ray coherent diffraction imaging with an objective lens: towards 3D mapping of thick polycrystals

Research output: Research - peer-reviewJournal article – Annual report year: 2018

Documents

View graph of relations

We report on a new x-ray imaging method, which combines the high spatial resolution of coherent diffraction imaging with the ability of dark field microscopy to map grains within thick polycrystalline specimens. An x-ray objective serves to isolate a grain and avoid overlap of diffraction spots. Iterative oversampling routines are used to reconstruct the shape and strain field within the grain from the far field intensity pattern. The limitation on resolution caused by the finite numerical aperture of the objective is overcome by the Fourier synthesis of several diffraction patterns. We demonstrate the method by an experimental study of a ~500 nm Pt grain for the two cases of a real and a virtual image plane. In the latter case the spatial resolution is 13 nm rms. Our results confirm that no information on the pupil function of the lens is required and that lens aberrations are not critical.
Original languageEnglish
JournalNature Photonics
Number of pages12
ISSN1749-4885
StateSubmitted - 2018
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 152808738