Working Memory Modulation of Frontoparietal Network Connectivity in First-Episode Schizophrenia

Working memory (WM) impairment is regarded as a core aspect of schizophrenia. However, the neural mechanisms behind this cognitive deficit remain unclear. The connectivity of a frontoparietal network is known to be important for subserving WM. Using functional magnetic resonance imaging, the current study investigated whether WM-dependent modulation of effective connectivity in this network is affected in a group of first-episode schizophrenia (FES) patients compared with similarly performing healthy participants during a verbal n-back task. Dynamic causal modeling (DCM) of the coupling between regions (left inferior frontal gyrus (IFG), left inferior parietal lobe (IPL), and primary visual area) identified in a psychophysiological interaction (PPI) analysis was performed to characterize effective connectivity during the n-back task. The PPI analysis revealed that the connectivity between the left IFG and left IPL was modulated by WM and that this modulation was reduced in FES patients. The subsequent DCM analysis confirmed this modulation by WM and found evidence that FES patients had reduced forward connectivity from IPL to IFG. These findings provide evidence for impaired WM modulation of frontoparietal effective connectivity in the early phase of schizophrenia, even with intact WM performance, suggesting a failure of context-sensitive coupling in the schizophrenic brain.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Cognitive Systems, Central South University, University College London
Contributors: Nielsen, J. D., Madsen, K. H., Wang, Z., Liu, Z., Friston, K. J., Zhou, Y.
Number of pages: 10
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Cerebral Cortex
ISSN (Print): 1047-3211
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.87 SJR 3.892 SNIP 1.633
Web of Science (2017): Impact factor 6.308
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.5 SJR 4.103 SNIP 1.614
Web of Science (2016): Impact factor 6.559
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.68 SJR 4.929 SNIP 1.872
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.86 SJR 4.887 SNIP 1.994
Web of Science (2014): Impact factor 8.665
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.26 SJR 5.386 SNIP 1.899
Web of Science (2013): Impact factor 8.305
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 7.28 SJR 5.077 SNIP 1.916
Web of Science (2012): Impact factor 6.828
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2