Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation - DTU Orbit (25/12/2018)

Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation

A novel submerged-light photobioreactor (SL-PBR) with free-floating, wireless internal light sources powered by near-field resonant inductive coupling was investigated using a quick (Chlorella vulgaris) and a slow (Haematococcus pluvialis) growing microalgal species. During testing of the SL-PBR, the yield on photons was 1.18 and 1.15 g biomass mol−1 photons for C. vulgaris and H. pluvialis, respectively. At the same time, a conventional, externally illuminated PBR with the same internal light intensity produced yields of 0.78 and 0.05 g biomass mol−1 photons for C. vulgaris and H. pluvialis, respectively. Thus, the wireless internal light source was proven to be up to fivefold more effective light delivery system compared to the conventional illumination system. Meanwhile, it was discovered that some of the internal light sources had ceased to function, which might have caused underestimation of the true yield. Interestingly, the SL-PBR provided more uniform light to the culture and had the ability to reduce the presence of dark zones and the effect of self-shading. Thus, the SL-PBR showed potential, if subsequent prototype designs address the technical challenges identified during this study.

General information

State: Published
Organisations: Department of Environmental Engineering, Water Resources Engineering, Residual Resource Engineering, Swiss Federal Institute of Technology
Number of pages: 8
Pages: 244-251
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Algal Research
Volume: 25
ISSN (Print): 2211-9264
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.43 SJR 1.142 SNIP 1.171
Web of Science (2017): Impact factor 3.745
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.45 SJR 1.465 SNIP 1.141
Web of Science (2016): Impact factor 3.994
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.53 SJR 1.963 SNIP 1.618
Web of Science (2015): Impact factor 4.694
Scopus rating (2014): CiteScore 4.96 SJR 1.902 SNIP 1.598
Web of Science (2014): Impact factor 5.014
Scopus rating (2013): CiteScore 4.17 SJR 1.424 SNIP 1.119
Web of Science (2013): Impact factor 4.095
ISI indexed (2013): ISI indexed no
Original language: English
Keywords: Artificial light, Chlorella vulgaris, Haematococcus pluvialis, Internal illumination, Near field resonant inductive coupling

DOIs:
10.1016/j.algal.2017.05.015
Source: FindIt
Source-ID: 2370865313
Research output: Research - peer-review Journal article – Annual report year: 2017