Wind-induced single-sided natural ventilation in buildings near a long street canyon: CFD evaluation of street configuration and envelope design

Wind-induced single-sided natural ventilation in buildings was widely investigated based on isolated buildings. However, owing to the presence of surrounding buildings, the wind flow pattern around a building in an urban area becomes very different from that around an isolated building. Considering an urban context, this study investigates the wind-induced single-sided natural ventilation in buildings near a long street canyon under a perpendicular wind direction using CFD method. Four aspect ratios (AR) of the street canyon, from 1.0, 2.0, 4.0 to 6.0, are investigated to examine the influence of street configuration, while eight envelope features are compared to explore the possibility of envelope design in improving natural ventilation performance of urban buildings. Ventilation rate of rooms in buildings is particularly analyzed. AR influences ventilation rate and its distribution among rooms along height of buildings. The percentage decrease of ventilation rate of buildings reaches 67% when AR of a street canyon is increased from 1.0 to 6.0. Envelope design provides a possibility to enhance the adaptability of buildings to dense urban environments. A good envelope design, such as a horizontal feature at the middle of an opening, can break effectively the along-facade flow and thus create a large pressure difference to drive ventilation. The findings of this study are intended to increase the understanding of natural ventilation performance in urban buildings and thus provide information for urban planning and building design.

General information
Publication status: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Hong Kong Polytechnic University
Contributors: Ai, Z., Mak, C.
Number of pages: 11
Pages: 96-106
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Wind Engineering and Industrial Aerodynamics
Volume: 172
ISSN (Print): 0167-6105
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 3.86
Web of Science (2018): Indexed yes
Original language: English
Keywords: Envelope design, Natural ventilation, Street canyon, Urban environment, CFD simulation
DOIs: 10.1016/j.jweia.2017.10.024
Source: FindIt
Source-ID: 2393392354
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review