Willingness to pay for electric vehicles and their attributes

This article presents a stated preference study of electric vehicle choice using data from a national survey. We used a choice experiment wherein 3029 respondents were asked to choose between their preferred gasoline vehicle and two electric versions of that preferred vehicle. We estimated a latent class random utility model and used the results to estimate the willingness to pay for five electric vehicle attributes: driving range, charging time, fuel cost saving, pollution reduction, and performance. Driving range, fuel cost savings, and charging time led in importance to respondents. Individuals were willing to pay (wtp) from $35 to $75 for a mile of added driving range, with incremental wtp per mile decreasing at higher distances. They were willing to pay from $425 to $3250 per hour reduction in charging time (for a 50 mile charge). Respondents capitalized about 5 years of fuel saving into the purchase price of an electric vehicle. We simulated our model over a range of electric vehicle configurations and found that people with the highest values for electric vehicles were willing to pay a premium above their wtp for a gasoline vehicle that ranged from $6000 to $16,000 for electric vehicles with the most desirable attributes. At the same time, our results suggest that battery cost must drop significantly before electric vehicles will find a mass market without subsidy.

Keyword: Electric vehicles, Discrete choice, Stated preference

General information
State: Published
Organisations: University of Delaware
Contributors: Hidrue, M. K., Parsons, G. R., Kempton, W., Gardner, M. P.
Pages: 686-705
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Resource and Energy Economics
Volume: 33
Issue number: 3
ISSN (Print): 0928-7655
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.4 SJR 1.412 SNIP 1.423
Web of Science (2017): Impact factor 1.92
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.83 SJR 1.143 SNIP 1.009
Web of Science (2016): Impact factor 1.701
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.82 SJR 1.206 SNIP 1.192
Web of Science (2015): Impact factor 1.25
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.17 SJR 1.541 SNIP 1.808
Web of Science (2014): Impact factor 1.329
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.76 SJR 1.248 SNIP 1.311
Web of Science (2013): Impact factor 1.404
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.88 SJR 1.279 SNIP 1.479
Web of Science (2012): Impact factor 1.495
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.6 SJR 1.441 SNIP 1.439
Web of Science (2011): Impact factor 1.241
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.192 SNIP 1.368
Web of Science (2010): Impact factor 1.778