Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

Objective To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation.

General information
State: Published
Organisations: National Food Institute, Research Group for Gut Microbiology and Immunology, Department of Health Technology, Department of Biotechnology and Biomedicine, Disease Systems Immunology, Department of Chemical and Biochemical Engineering, Organic Chemistry, Center for BioProcess Engineering, Research group for Analytical Food Chemistry, Copenhagen Center for Health Technology, University of Copenhagen, Chalmers University of Technology, Bispebjerg University Hospital, University Hospital Herlev, University of Auckland
Pages: 83-93
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Gut
Volume: 68
Issue number: 1
ISSN (Print): 0017-5749
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 9.82 SJR 7.44 SNIP 3.832
Web of Science (2017): Impact factor 17.016
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 9.29 SJR 7.074 SNIP 3.946
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 9.1 SJR 6.809 SNIP 3.968
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 8.76 SJR 6.104 SNIP 3.865
Web of Science (2014): Impact factor 14.66
BFI (2013): BFI-level 2
Keywords: colonic microflora, diet, immune response, inflammation, obesity

Electronic versions:
gutjnl_2017_314786.full.pdf

DOI's:
10.1136/gutjnl-2017-314786

Source: FindIt
Source-ID: 2392748308

Research output: Research - peer-review; Journal article – Annual report year: 2019