Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

Objective
To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design
60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion
Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation.
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 7.6 SJR 5.58 SNIP 3.459
Web of Science (2013): Impact factor 13.319
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.36 SJR 4.066 SNIP 2.737
Web of Science (2012): Impact factor 10.732
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.74 SJR 3.626 SNIP 2.612
Web of Science (2011): Impact factor 10.111
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.527 SNIP 2.719
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.308 SNIP 2.729
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.275 SNIP 2.725
Scopus rating (2007): SJR 3.08 SNIP 2.703
Scopus rating (2006): SJR 3.056 SNIP 2.67
Scopus rating (2005): SJR 2.392 SNIP 2.402
Scopus rating (2004): SJR 2.25 SNIP 2.225
Scopus rating (2003): SJR 1.912 SNIP 2.197
Scopus rating (2002): SJR 1.994 SNIP 2.372
Scopus rating (2001): SJR 2.014 SNIP 2.32
Scopus rating (2000): SJR 1.396 SNIP 2.276
Scopus rating (1999): SJR 1.354 SNIP 2.122
Original language: English
Keywords: colonic microflora, diet, immune response, inflammation, obesity
Electronic versions:
gutjnl_2017_314786.full.pdf
DOIs:
10.1136/gutjnl-2017-314786
Source: FindIt
Source-ID: 2392748308
Research output: Research - peer-review › Journal article – Annual report year: 2019