When two become one - DTU Orbit (01/01/2019)

When two become one: an insight into 2D conductive oxide interfaces

Recent progress has led to conductance confinement at the interface of complex oxide heterostructures, thereby providing new opportunities to explore nano-electronic as well as nano-ionic devices. In this paper we describe how interfacial contiguity between materials can trigger redox reactions inducing metallic conductivity along the interface of SrTiO$_3$-based heterostructures and create new types of 2D Electron Gases (2DEG) at the hetero-interface with electron mobility enhancements of more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Furthermore, our recent results, examining strain effects at interfaces, demonstrate the potential of achieving hetero-epitaxial thin films with superior ionic or electronic properties. We also present a novel concept that uncovers a wide variety of possible technological opportunities for materials design utilizing ionic conducting multi-layered heterostructures. These findings hold the potential to pave the way for novel and/or superior all-oxide electronic and ionic devices.

General information

State: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Ceramic Engineering & Science
Contributors: Pryds, N., Esposito, V.
Pages: 1-23
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Journal of Electroceramics
Volume: 38
Issue number: 1
ISSN (Print): 1385-3449
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.24 SJR 0.427 SNIP 0.508
- Web of Science (2017): Impact factor 1.238
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.15 SJR 0.432 SNIP 0.553
- Web of Science (2016): Impact factor 1.238
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.49 SJR 0.56 SNIP 0.729
- Web of Science (2015): Impact factor 1.263
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.62 SJR 0.586 SNIP 0.807
- Web of Science (2014): Impact factor 1.744
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 1.43 SJR 0.555 SNIP 1.071
- Web of Science (2013): Impact factor 1.422
- ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 1.41 SJR 0.642 SNIP 1.078
- Web of Science (2012): Impact factor 1.143
- ISI indexed (2012): ISI indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 1.07 SJR 0.489 SNIP 0.777
- Web of Science (2011): Impact factor 1.194
- ISI indexed (2011): ISI indexed yes
- Web of Science (2011): Indexed yes