Wave-splitting in the bistable Gray-Scott model

Wave-splitting in the bistable Gray-Scott model

The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentration is relatively high and limited by substrate depletion, may again undergo a Hopf bifurcation and a subcritical Turing bifurcation capable of producing global as well as localized, stationary spatial structures. The paper presents the results of a computer simulation study of these far-from-equilibrium phenomena. Special emphasis is given to the propagation, collision and splitting of traveling pulses.
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.845 SNIP 0.959
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.711 SNIP 0.939
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.622 SNIP 1.104
Scopus rating (2005): SJR 0.669 SNIP 1.007
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.653 SNIP 1.152
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.828 SNIP 1.135
Scopus rating (2002): SJR 0.783 SNIP 1.111
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.639 SNIP 1.088
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.791 SNIP 0.908
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.78 SNIP 1.02
Original language: English
Source: orbit
Source-ID: 167019
Research output: Research - peer-review ; Journal article – Annual report year: 1996