Wave-splitting in the bistable Gray-Scott model

The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentration is relatively high and limited by substrate depletion, may again undergo a Hopf bifurcation and a subcritical Turing bifurcation capable of producing global as well as localized, stationary spatial structures. The paper presents the results of a computer simulation study of these far-from-equilibrium phenomena. Special emphasis is given to the propagation, collision and splitting of traveling pulses.

General information
State: Published
Organisations: Department of Physics
Contributors: Rasmussen, K., Mazin, W., Mosekilde, E., Dewel, G., Borckmans, P.
Pages: 1077-1092
Publication date: 1996
Peer-reviewed: Yes

Publication information
Volume: 6
Issue number: 6
ISSN (Print): 0218-1274
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.64 SJR 0.568 SNIP 0.714
Web of Science (2017): Impact factor 1.501
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.43 SJR 0.587 SNIP 0.876
Web of Science (2016): Impact factor 1.329
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.34 SJR 0.752 SNIP 0.928
Web of Science (2015): Impact factor 1.355
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.14 SJR 0.557 SNIP 0.856
Web of Science (2014): Impact factor 1.078
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.26 SJR 0.67 SNIP 0.92
Web of Science (2013): Impact factor 1.017
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.04 SJR 0.551 SNIP 0.772
Web of Science (2012): Impact factor 0.921
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1 SJR 0.584 SNIP 0.712
Web of Science (2011): Impact factor 0.755
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.67 SNIP 0.786
Web of Science (2010): Impact factor 0.814
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1