View graph of relations

We exploit the localized surface-plasmon resonance (LSPR) of terahertz gold gammadion structures for wafer scale critical dimension metrology of nanostructures. The proposed characterization method, LSPR spectroscopy, is based on optical transmission measurements and is benchmarked against numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results demonstrate the potential of LSPR spectroscopy as an alternative characterization method to scanning electron microscopy, atomic force microscopy and scatterometry.
Original languageEnglish
JournalNanotechnology
Publication date2012
Volume23
Issue38
Pages385306
Number of pages5
ISSN0957-4484
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 1
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 10663681