Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand - DTU Orbit (12/12/2018)

Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand
The relationship between Vp and Vs may be used to predict Vs where only Vp is known. Vp/Vs is also used to identify pore fluids from seismic data and amplitude variation with offset analysis. Theoretical, physical, as well as statistical empirical Vp-Vs relationships have been proposed for reservoir characterization when shearwave data are not available. In published work, the focus is primarily on the Vp-Vs relationship of quartzitic sandstone. In order to broaden the picture we present Vp-Vs relationships of greensand composed of quartz and glauconite by using data from the Paleocene greensand Nini oil field in the North Sea. A Vp-Vs relationship derived from modelling is compared with empirical Vp-Vs regressions from laboratory data as well as from log data. The accuracy of Vs prediction is quantified in terms of rootmean- square error. We find that the Vp-Vs relationship derived from modelling works well for greensand shear-wave velocity prediction. We model the seismic response of glauconitic greensand by using laboratory data from the Nini field. Our studies here reveal that brine-saturated glauconitic greensand can have a similar seismic response to that from oil-saturated quartzitic sandstone and that oil-saturated strongly cemented greensand can have a similar amplitude variation with offset response to that from brine-saturated weakly cemented greensand.

General information
State: Published
Organisations: Center for Energy Resources Engineering, Department of Environmental Engineering, Stanford University
Contributors: Hossain, Z., Mukerji, T., Fabricius, I. L.
Pages: 117-137
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Geophysical Prospecting
Volume: 60
Issue number: 1
ISSN (Print): 0016-8025
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.94 SJR 0.7 SNIP 1.18
Web of Science (2017): Impact factor 1.744
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.84 SJR 1.834 SNIP 1.882
Web of Science (2016): Impact factor 1.846
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.97 SJR 1.675 SNIP 2.281
Web of Science (2015): Impact factor 1.835
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.7 SJR 1.961 SNIP 1.787
Web of Science (2014): Impact factor 1.467
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.5 SJR 1.679 SNIP 1.54
Web of Science (2013): Impact factor 1.506
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.39 SJR 0.904 SNIP 1.297
Web of Science (2012): Impact factor 1.36
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.92 SJR 2.262 SNIP 1.363
Web of Science (2011): Impact factor 1.315
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.736 SNIP 1.056
Web of Science (2010): Impact factor 1.493
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.71 SNIP 1.658
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.781 SNIP 0.925
Scopus rating (2007): SJR 0.95 SNIP 1.193
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.103 SNIP 1.438
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.474 SNIP 0.759
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.022 SNIP 1.52
Scopus rating (2003): SJR 1.084 SNIP 1.475
Scopus rating (2002): SJR 1.32 SNIP 1.812
Scopus rating (2001): SJR 0.819 SNIP 1.111
Scopus rating (2000): SJR 0.8 SNIP 1.154
Scopus rating (1999): SJR 0.804 SNIP 1.474
Original language: English
Keywords: AVO, Greensand, Glauconite, Velocity analysis
DOIs:
10.1111/j.1365-2478.2011.00968.x
Source: orbit
Source-ID: 285629
Research output: Research - peer-review › Journal article – Annual report year: 2011