Vorticity topology of vortex pair interactions at low Reynolds numbers - DTU Orbit
(01/04/2019)

Vorticity topology of vortex pair interactions at low Reynolds numbers

We investigate vortex merging at low Reynolds numbers from a topological point of view. We identify vortices as local extremal points of vorticity and follow the motion and bifurcation of these points as time progresses. We consider both two-dimensional simulations of the vorticity transport equation and an analytical study of the core growth model. The merging process of identical vortices is shown to occur through a pitchfork bifurcation and for asymmetric vortices one vortex merges with a saddle through a cusp (perturbed pitchfork) bifurcation. Excellent agreement between the core growth model and the numerical simulations is observed. For higher Reynolds numbers, filamentation becomes dominant hence limiting the predictive value of the core growth model. A complete investigation of merging in the core growth model is conducted for all possible vortex strengths. Simple, analytical expressions are derived for bifurcation curves, merging time, and vortex positions depending on systems parameters.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics, Roskilde University, Ecole Nationale Supérieure de Mécanique et Aérotechnique
Contributors: Andersen, M., Schreck, C., Hansen, J. S., Brøns, M.
Pages: 58-67
Publication date: 1 Mar 2019
Peer-reviewed: Yes

Publication information

Journal: European Journal of Mechanics, B/Fluids
Volume: 74
ISSN (Print): 0997-7546
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.14 SJR 0.726 SNIP 1.36
Web of Science (2017): Impact factor 1.984
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.07 SJR 0.808 SNIP 1.414
Web of Science (2016): Impact factor 1.969
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.75 SJR 0.8 SNIP 1.444
Web of Science (2015): Impact factor 1.418
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.8 SJR 0.788 SNIP 1.57
Web of Science (2014): Impact factor 1.656
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.79 SJR 0.847 SNIP 1.538
Web of Science (2013): Impact factor 1.545
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.86 SJR 0.934 SNIP 1.609
Web of Science (2012): Impact factor 1.635
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.61 SJR 0.712 SNIP 1.475
Web of Science (2011): Impact factor 1.328
ISI indexed (2011): ISI indexed yes