Visualizing the mobility of silver during catalytic soot oxidation

The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation temperature was significantly lower compared to uncatalyzed soot oxidation with soot and silver loosely stirred together (loose contact) and lowered further with the two components crushed together (tight contact). The in situ TEM investigations revealed that the silver particles exhibited significant mobility during the soot oxidation, and this mobility, which increases the soot/catalyst contact, is expected to be an important factor for the lower oxidation temperature. In the intimate tight contact mixture the initial dispersion of the silver particles is greater, and the onset of mobility occurs at a lower temperature which is consistent with the lower oxidation temperature of the tight contact mixture. (C) 2015 Elsevier B.V. All rights reserved.
Web of Science (2011): Impact factor 5.625
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.479 SNIP 1.904
Web of Science (2010): Impact factor 4.749
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.323 SNIP 2.245
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.514 SNIP 2.297
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.536 SNIP 2.532
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.315 SNIP 2.272
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.136 SNIP 2.283
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.406 SNIP 2.421
Scopus rating (2003): SJR 2.132 SNIP 2.223
Scopus rating (2002): SJR 2.373 SNIP 1.851
Scopus rating (2001): SJR 2.685 SNIP 2.39
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.859 SNIP 2.08
Scopus rating (1999): SJR 1.921 SNIP 1.871
Original language: English
Keywords: Silver mobility, Environmental TEM, Soot oxidation
Electronic versions:
Visualizing_the_mobility_of_silver_during_catalytic_soot_oxidation_authors_final_version.pdf. Embargo ended: 23/10/2017
DOIs:
10.1016/j.apcatb.2015.10.029
Source: Findit
Source-ID: 2287628948
Research output: Research - peer-review › Journal article – Annual report year: 2016