Virtual Screening and Prediction of Site of Metabolism for Cytochrome P450 1A2 Ligands

Publication: Research - peer-reviewJournal article – Annual report year: 2009

View graph of relations

With the availability of an increasing number of high resolution 3D structures of human cytochrome P450 enzymes, structure-based modeling tools are more readily used. In this study we explore the possibilities of using docking and scoring experiments on cytochrome P450 1A2. Three different questions have been addressed: 1. Binding orientations and conformations were successfully predicted for various substrates. 2. A virtual screen was performed with satisfying enrichment rates. 3. A classification of individual compounds into active and inactive was performed. It was found that while docking can be used successfully to address the first two questions, it seems to be more difficult to perform the classification. Different scoring functions were included, and the well-characterized water molecule in the active site was included in various ways. Results are compared to experimental data and earlier classification data using machine learning methods. The possibilities and limitations of using structure-based drug design tools for cytochrome P450 1A2 come to light and are discussed.
Original languageEnglish
JournalJournal of Chemical Information and Modeling
Publication date2009
Volume49
Issue1
Pages43-52
ISSN1549-9596
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 30
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 3460227