Ventilation of air-conditioned residential buildings: A case study in Hong Kong

More and more studies reported that there were insufficient ventilation and excessive CO₂ concentration in air-conditioned residential buildings, but few solution's were provided. This study investigates the overnight evolution of CO₂ concentration in air-conditioned residential buildings and then focuses mainly on the evaluation of three ventilation strategies, including overnight natural ventilation, short-term mechanical ventilation and short-term natural ventilation. On-site measurements were conducted in a typical residential bedroom in Hong Kong in September. The indoor and outdoor CO₂ concentration, air temperature and relative humidity as well as the outdoor wind speed during the measurements were analysed. Ventilation rates were calculated based on the time series of CO₂ concentration. This study confirms that additional ventilation is usually needed in air-conditioned residential buildings. Overnight natural ventilation with even a small opening is associated with excessive energy consumption and deteriorated indoor thermal environment. Short-term natural ventilation strategies are inefficient and uncontrollable. Compared to the best short-term natural ventilation strategy, a reasonably designed short-term mechanical ventilation strategy requires only a 41% of ventilation period to complete one full replacement of indoor air and to reach a lower indoor CO₂ concentration. Nighttime case studies and a theoretical analysis suggest that a few several-minute mechanical ventilation periods could potentially maintain an acceptable indoor air quality for a normal sleeping period of 8 h.

(C) 2016 Elsevier B.V. All rights reserved.

General information
Publication status: Published
Organisations: Hong Kong Polytechnic University
Contributors: Ai, Z., Mak, C. M., Cui, D. J., Xue, P.
Number of pages: 12
Pages: 116-127
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Energy and Buildings
Volume: 127
ISSN (Print): 0378-7788
Ratings:
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 4.64 SJR 2.055 SNIP 1.968
 Web of Science (2016): Impact factor 4.067
Web of Science (2016): Indexed yes
Original language: English
Keywords: Ventilation, Room air conditioner, Residential buildings, Carbon dioxide (CO2), On-site measurements
DOIs: 10.1016/j.enbuild.2016.05.055
Source: FindIt
Source-ID: 2304696432
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review