Velocity-space tomography using prior information at MAST - DTU Orbit (16/02/2019)

Velocity-space tomography using prior information at MAST

Velocity-space tomography provides a way of diagnosing fast ions in a fusion plasma by combining measurements from multiple instruments. We use a toroidally viewing and a vertically viewing fast-ion D-alpha diagnostic installed on the mega-amp spherical tokamak (before the upgrade) to perform velocity-space tomography of the fast-ion distribution function. To make up for the scarce amount of data, prior information is included in the inversions. We impose a non-negativity constraint, suppress the distribution in the velocity-space region associated with null-measurements, and encode the belief that the distribution function does not extend to energies significantly higher than those expected neoclassically. This allows us to study the fast-ion velocity distributions and the derived fast-ion densities before and after a sawtooth crash.

General information
State: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, Chinese Academy of Sciences, Max-Planck-Institut für Plasmaphysik, Culham Science Centre
Contributors: Madsen, B., Salewski, M., Huang, J., Jacobsen, A., Jones, O., McClements, K. G.
Number of pages: 5
Publication date: 2018

Publication information
Journal: Review of Scientific Instruments
Volume: 89
Issue number: 10
Article number: 10D125
ISSN (Print): 0034-6748
Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.32 SJR 0.585 SNIP 0.858
- Web of Science (2017): Impact factor 1.428
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.2 SJR 0.703 SNIP 1.048
- Web of Science (2016): Impact factor 1.515
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.11 SJR 0.686 SNIP 0.908
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.45 SJR 0.972 SNIP 1.261
- Web of Science (2014): Impact factor 1.614
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 1.28 SJR 0.9 SNIP 1.099
- Web of Science (2013): Impact factor 1.584
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 1.45 SJR 1.017 SNIP 1.277
- Web of Science (2012): Impact factor 1.602
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1