Vector velocity volume flow estimation: Sources of error and corrections applied for arteriovenous fistulas

A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipse to cross-sectional scans of the fistulas, the major axis was on average 10.2 mm, which is 6.6% larger than the minor axis. The ultrasound beam was on average 1.5 mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p = 0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice.
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.2 SJR 0.707 SNIP 1.72
Web of Science (2011): Impact factor 1.838
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.745 SNIP 1.493
Web of Science (2010): Impact factor 1.599
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.587 SNIP 1.31
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.582 SNIP 1.082
Scopus rating (2007): SJR 0.674 SNIP 1.023
Scopus rating (2006): SJR 0.696 SNIP 1.832
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.729 SNIP 1.101
Scopus rating (2004): SJR 0.762 SNIP 1.452
Scopus rating (2003): SJR 0.7 SNIP 0.928
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.577 SNIP 1.414
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.578 SNIP 0.782
Scopus rating (2000): SJR 0.859 SNIP 1.031
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.646 SNIP 0.991
Original language: English
Keywords: Volume flow, Transverse oscillation, Error sources, Arteriovenous fistula
DOIs:
10.1016/j.ultras.2016.04.023
Source: PublicationPreSubmission
Source-ID: 123924249
Research output: Research - peer-review › Journal article – Annual report year: 2016