Variation that can be expected when using particle tracking models in connectivity studies - DTU Orbit (06/12/2018)

Variation that can be expected when using particle tracking models in connectivity studies
- A suite of ocean circulation and Lagrangian models were compared to determine inter-model uncertainty and variation.
- Absolute results (positions, temperatures, etc.) varied between models, but trends were comparable.
- More plaice than sole larvae reached a marine protected area although released in the same area but at different times.
- About 10% of all herring larvae released in the southern North Sea were located in a wind-park area when becoming juvenile.

General information
State: Published
Pages: 133-149
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Sea Research
Volume: 127
ISSN (Print): 1385-1101
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.03 SJR 0.853 SNIP 0.887
Web of Science (2017): Impact factor 1.729
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.98 SJR 0.974 SNIP 0.961
Web of Science (2016): Impact factor 1.888
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.09 SJR 1.035 SNIP 0.998
Web of Science (2015): Impact factor 2.148
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.15 SJR 0.974 SNIP 1.008
Web of Science (2014): Impact factor 1.99
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2 SJR 0.932 SNIP 1.095
Web of Science (2013): Impact factor 1.855
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.18 SJR 1.112 SNIP 1.053
Web of Science (2012): Impact factor 1.829
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.5 SJR 1.384 SNIP 1.286
Web of Science (2011): Impact factor 2.598
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.283 SNIP 1.242
Web of Science (2010): Impact factor 2.444
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.266 SNIP 1.045
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.316 SNIP 1.141
Scopus rating (2007): SJR 1.412 SNIP 1.17
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.331 SNIP 1.177
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.002 SNIP 0.909
Scopus rating (2004): SJR 0.935 SNIP 0.945
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.367 SNIP 1.14
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.117 SNIP 0.931
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.174 SNIP 0.962
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.368 SNIP 1.007
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.217 SNIP 1.047
Original language: English
Keywords: Ocean circulation, Lagrangian approach, Variability, Marine protected areas, Renewable energy, Wind park, Model intercomparison, Ensemble
DOIs:
10.1016/j.seares.2017.04.009
Source: FindIt
Source-ID: 2388403245
Research output: Research - peer-review › Journal article – Annual report year: 2017