Validation of SMOS Brightness Temperatures During the HOBE Airborne Campaign, Western Denmark

The Soil Moisture and Ocean Salinity (SMOS) mission delivers global surface soil moisture fields at high temporal resolution which is of major relevance for water management and climate predictions. Between April 26 and May 9, 2010, an airborne campaign with the L-band radiometer EMIRAD-2 was carried out within one SMOS pixel (44 km × 44 km) in the Skjern River Catchment, Denmark. Concurrently, ground sampling was conducted within three 2 km × 2 km patches (EMIRAD footprint size) of differing land cover. By means of this data set, the objective of this study is to present the validation of SMOS L1C brightness temperatures T_{B} of the selected node. Data is stepwise compared from point via EMIRAD to SMOS scale. From ground soil moisture samples, T_{B}'s are pointwise estimated through the L-band microwave emission of the biosphere model using land cover specific model settings. These T_{B}'s are patchwise averaged and compared with EMIRAD T_{B}'s. A simple uncertainty assessment by means of a set of model runs with the most influencing parameters varied within a most likely interval results in a considerable spread of T_{B}'s (5–20 K). However, for each land cover class, a combination of parameters could be selected to bring modeled and EMIRAD data in good agreement. Thereby, replacing the Dobson dielectric mixing model with the Mironov model decreases the overall RMSE from 11.5 K to 3.8 K. Similarly, EMIRAD data averaged at SMOS scale and corresponding SMOS T_{B}'s show good accordance on the single day where comparison is not prevented by strong radio-frequency interference (RFI) (May 2, avg. $\text{RMSE} = 9.7 \text{K}$). While the advantages of solid data sets of high spatial coverage and density throughout spatial scales for SMOS validation could be clearly demonstrated, small temporal variability in soil moisture conditions and RFI contamination throughout the campaign limited the extent of the validation work. Further attempts over longer time frames are planned by means of soil moisture network data as well as studies on the impacts of organic layers under natural vegetation and higher open water fractions at surrounding grid nodes.

General information
State: Published
Organisations: Microwaves and Remote Sensing, National Space Institute, Centre d'Etudes Spatiales de la Biosphère
Contributors: Bircher, S., Balling, J. E., Skou, N., Kerr, Y. H.
Pages: 1468-1482
Publication date: 2012
Peer-reviewed: Yes

Publication information
Volume: 50
Issue number: 5
ISSN (Print): 0196-2892
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.84 SJR 2.649 SNIP 2.774
Web of Science (2017): Impact factor 4.662
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.45 SJR 2.616 SNIP 3.184
Web of Science (2016): Impact factor 4.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.7 SJR 2.486 SNIP 3.107
Web of Science (2015): Impact factor 3.36
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.71 SJR 2.445 SNIP 3.459
Web of Science (2014): Impact factor 3.514
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.22 SJR 2.283 SNIP 3.227
Web of Science (2013): Impact factor 2.933
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.26 SJR 2.337 SNIP 3.833
Web of Science (2012): Impact factor 3.467
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.85 SJR 2.249 SNIP 2.988
Web of Science (2011): Impact factor 2.895
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.14 SNIP 2.932
Web of Science (2010): Impact factor 2.485
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.85 SNIP 2.964
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.77 SNIP 3.084
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.657 SNIP 3.67
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.137 SNIP 2.821
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.957 SNIP 2.932
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.2 SNIP 3.208
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2 SNIP 3.412
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.075 SNIP 3.302
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.113 SNIP 1.934
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.107 SNIP 1.635
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.368 SNIP 1.8
Original language: English
DOIs:
10.1109/TGRS.2011.2170177
Source: orbit
Source-ID: 314028
Research output: Research - peer-review › Journal article – Annual report year: 2011