Validation of Reported Whole-Grain Intake from a Web-Based Dietary Record against Plasma Alkylresorcinol Concentrations in 8- to 11-Year-Olds Participating in a Randomized Controlled Trial - DTU Orbit (12/12/2018)

BACKGROUND: Whole-grain (WG) intake is important for human health, but accurate intake estimation is challenging. Use of a biomarker for WG intake provides a possible way to validate dietary assessment methods. OBJECTIVE: Our aim was to validate WG intake from 2 diets reported by children, using plasma alkylresorcinol (AR) concentrations, and to investigate the 3-mo reproducibility of AR concentrations and reported WG intake. METHODS: AR concentrations were analyzed in fasting blood plasma samples, and WG intake was estimated in a 7-d web-based diary by 750 participants aged 8-11 y in a 2 school meal × 3 mo crossover trial. Reported WG intake and plasma AR concentrations were compared when children ate their usual bread-based lunch (UBL) and when served a hot lunch meal (HLM). Correlations and cross-classification were used to rank subjects according to intake. The intraclass correlation coefficients (ICCs) between subjects’ measurements at baseline and after the UBL were used to assess reproducibility. RESULTS: Correlations between reported WG wheat + rye intake and plasma AR were 0.40 and 0.37 (P <0.001) for the UBL and the HLM diets, and 78% and 77% were classified in the same or adjacent quartiles for the UBL and HLM diets, respectively. The ICC over 3 mo was 0.47 (95% CI: 0.38, 0.55) for plasma total ARs and 0.64 (95% CI: 0.58, 0.70) for reported WG intake. Correlations were higher when using the AR C17:0 homolog as a biomarker, reflecting rye intake instead of plasma total ARs [UBL: r = 0.47; HLM: r = 0.43, P <0.001; ICC = 0.51 (95% CI: 0.43, 0.59)]. CONCLUSIONS: Self-reported WG wheat + rye intake among children showed moderate correlations with plasma AR concentrations. Substantial intraindividual variation was found in WG intake and plasma AR concentrations. The AR homolog C17:0 may be used as a biomarker for WG intake when the WG intake primarily comes from rye as in the present study. This trial was registered at clinicaltrials.gov as NCT01457794.

General information
State: Published
Organisations: National Food Institute, Division of Risk Assessment and Nutrition, Department of Applied Mathematics and Computer Science, Statistics and Data Analysis, Research group for Risk Benefit, University of Copenhagen, Karolinska Institutet, Swedish University of Agricultural Sciences
Pages: 377-383
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Nutrition
Volume: 146
Issue number: 2
ISSN (Print): 0022-3166
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.24 SJR 2.191 SNIP 1.395
Web of Science (2017): Impact factor 4.398
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.93 SJR 2.025 SNIP 1.336
Web of Science (2016): Impact factor 4.145
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.08 SJR 2.107 SNIP 1.517
Web of Science (2015): Impact factor 3.74
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.13 SJR 2.121 SNIP 1.581
Web of Science (2014): Impact factor 3.875
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.6 SJR 2.15 SNIP 1.615