Validation of buoyancy driven spectral tensor model using HATS data - DTU Orbit (21/03/2019)

Validation of buoyancy driven spectral tensor model using HATS data

We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ε), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).

General information

State: Published
Organisations: Department of Wind Energy, Meteorology & Remote Sensing, Resource Assessment Modelling, Wind turbine loads & control, University of Agder
Contributors: Chougule, A., Mann, J., Kelly, M. C., Larsen, G. C.
Number of pages: 9
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Physics: Conference Series (Online)
Volume: 753
Issue number: 3
Article number: 032038
ISSN (Print): 1742-6596
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.48 SJR 0.241 SNIP 0.447
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.45 SJR 0.24 SNIP 0.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.35 SJR 0.252 SNIP 0.374
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.32 SJR 0.264 SNIP 0.352
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.25 SJR 0.245 SNIP 0.293
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.33 SJR 0.293 SNIP 0.387
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.43 SJR 0.293 SNIP 0.356
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.288 SNIP 0.351
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.259 SNIP 0.346