The installation of measurements in distribution grids enables the development of data driven methods for the power system. However, these methods have to be validated in order to understand the limitations and capabilities for their use. This paper presents a systematic validation of a neural network approach for voltage estimation in active distribution grids by means of measured data from two feeders of a real low voltage distribution grid. The approach enables a real-time voltage estimation at locations in the distribution grid, where otherwise only non-real-time measurements are available. The method shows robust behavior in all analyzed aspects, which is vital for real world applications. A methodology to select the most relevant input variables and find the best achievable performance for a particular number of inputs is presented. Moreover, the paper shows that the performance is not sensitive to the number of neurons in the hidden layer of the neural network as long as the model is not underdetermined. The paper examines the quantity of historical data needed to establish an adequately functioning model. To accommodate grid evolution and seasonal effects, the impact of different retraining intervals is investigated. Furthermore, the performance of the model during periods of high PV generation is evaluated. The validation shows that accurate voltage estimation models for distribution grids with high share of dispersed generation can be established with approximately one month of historical data. The model has to be retrained every 10 to 20 days to retain estimation mean squared errors below 0.35 V2. It was also found that the performance does not decline during times of high PV generation.
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.97 SJR 0.84 SNIP 2.092
Web of Science (2011): Impact factor 1.478
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.872 SNIP 1.749
Web of Science (2010): Impact factor 1.562
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.718 SNIP 1.536
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.482 SNIP 1.32
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.472 SNIP 1.251
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.481 SNIP 0.876
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.556 SNIP 1.101
Scopus rating (2004): SJR 0.33 SNIP 1.062
Scopus rating (2003): SJR 0.742 SNIP 0.852
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.464 SNIP 0.709
Scopus rating (2001): SJR 0.407 SNIP 0.41
Scopus rating (2000): SJR 0.227 SNIP 0.559
Scopus rating (1999): SJR 0.225 SNIP 0.435
Original language: English
Keywords: Active Distribution Grids, Data Driven Methods, Distributed Generation, Neural Networks, Real-Time Voltage Estimation, Renewable Energy Sources
DOIs:
10.1016/j.epsr.2017.08.016
Source: PublicationPreSubmission
Source-ID: 134654432
Research output: Research - peer-review ; Journal article – Annual report year: 2018