Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities - DTU Orbit (11/03/2019)

Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities

Impervious surfaces (IS) are a key indicator of environmental quality, and mapping of urban IS is important for a wide range of applications including hydrological modelling, water management, urban and environmental planning and urban climate studies. This paper addresses the accuracy and applicability of vegetation indices (VI), from Landsat imagery, to estimate IS fractions for European cities. The accuracy of three different measures of vegetation cover is examined for eight urban areas at different locations in Europe. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) are converted to IS fractions using a regression modelling approach. Also, NDVI is used to estimate fractional vegetation cover (FR), and consequently IS fractions. All three indices provide fairly accurate estimates (MAEs ≈ 10%, MBE’s < 2%) of sub-pixel imperviousness, and are found to be applicable for cities with dissimilar climatic and vegetative conditions. The VI/IS relationship across cities is examined by quantifying the MAEs and MBEs between all combinations of models and urban areas. Also, regional regression models are developed by compiling data from multiple cities to examine the potential for developing and applying a single regression model to estimate IS fractions for numerous urban areas without reducing the accuracy considerably. Our findings indicate that the models can be applied broadly for multiple urban areas, and that the accuracy is reduced only marginally by applying the regional models. SAVI is identified as a superior index for the development of regional quantification models. The findings of this study highlight that IS fractions, and spatiotemporal changes herein, can be mapped by use of simple regression models based on VIs from remote sensors, and that the method presented enables simple, accurate and resource efficient quantification of IS.

General information
State: Published
Organisations: Department of Management Engineering, Systems Analysis, DTU Climate Centre, Energy Systems Analysis, University of Copenhagen
Contributors: Kaspersen, P. S., Fensholt, R., Drews, M.
Pages: 8224-8249
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing
Volume: 7
ISSN (Print): 2072-4292
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.03 SJR 1.386 SNIP 1.559
Web of Science (2017): Impact factor 3.406
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.56 SJR 1.309 SNIP 1.718
Web of Science (2016): Impact factor 3.244
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 3.76 SJR 1.349 SNIP 1.682
Web of Science (2015): Impact factor 3.036
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.23 SJR 1.275 SNIP 1.856
Web of Science (2014): Impact factor 3.18
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.01 SJR 1.127 SNIP 1.973
Web of Science (2013): Impact factor 2.623
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 2.36 SJR 0.99 SNIP 1.801
Web of Science (2012): Impact factor 2.101
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.3 SJR 0.533 SNIP 1.327
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 0.333 SNIP 0.772
Original language: English
Keywords: Impervious surfaces, Remote sensing, Landsat, Europe, NDVI, SAVI, Fractional vegetation cover, Regression modelling, Urban land cover change