Using business critical design rules to frame new architecture introduction in multi-architecture portfolios

When introducing new architectures to an industrial portfolio, counting multiple existing product and manufacturing solutions, time-to-market and investments in manufacturing equipment can be significantly reduced if new concepts are aligned with the existing portfolio. This can be done through component sharing, or sharing critical design principles. This alignment is not trivial, as extensive design knowledge is needed to overview a portfolio with many, often highly different products and manufacturing lines. In this paper, we suggest establishing a frame of reference for new-product introduction based on several â€œgame rules,â€”or Business Critical Design Rules (BCDRs), which denote the most critical features of the product and manufacturing architectures, and should be considered an obligatory reference for design when introducing new architectures. BCDRs are derived from the portfolio, architecture and module levels, including modelling of the most critical links between the product and manufacturing domains. The suggested modelling principle has been tested as a frame for new-architecture introduction, capturing critical modularisation principles in a large and global OEM. Application of the suggested method revealed a potential for reducing time-to-market and potentially cutting 35% off investments in new manufacturing equipment when introducing new products in the portfolio.

General information
State: Accepted/In press
Organisations: Department of Mechanical Engineering, Engineering Design and Product Development, Department of Management Engineering, Management Science, Operations Management
Contributors: Løkkegaard, M., Mortensen, N. H., Hvam, L.
Number of pages: 17
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: International Journal of Production Research
ISSN (Print): 0020-7543
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.9 SJR 1.432 SNIP 1.483
Web of Science (2017): Impact factor 2.623
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.67 SJR 1.435 SNIP 1.413
Web of Science (2016): Impact factor 2.325
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.29 SJR 1.306 SNIP 1.317
Web of Science (2015): Impact factor 1.693
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.15 SJR 1.222 SNIP 1.33
Web of Science (2014): Impact factor 1.477
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.09 SJR 1.2 SNIP 1.53
Web of Science (2013): Impact factor 1.323
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.93 SJR 1.238 SNIP 1.558
Web of Science (2012): Impact factor 1.46
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.69 SJR 1.138 SNIP 1.392
Web of Science (2011): Impact factor 1.115
ISI indexed (2011): ISI indexed yes