Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

Research output: Contribution to journalJournal article – Annual report year: 2016Researchpeer-review

Documents

DOI

View graph of relations

The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.
Original languageEnglish
JournalI O P Conference Series: Materials Science and Engineering
Volume139
Number of pages12
ISSN1757-8981
DOIs
Publication statusPublished - 2016
Event37th Risø International Symposium on Materials Science: Understanding performance of composite materials – mechanisms controlling properties - Risø Campus, Roskilde, Denmark
Duration: 5 Sep 20168 Sep 2016

Conference

Conference37th Risø International Symposium on Materials Science
LocationRisø Campus
CountryDenmark
CityRoskilde
Period05/09/201608/09/2016
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 125796685