The use of vitamins, polyphenolic antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics for the fortification of foods is increasing. However, these bioactive compounds have low stability and need to be protected to avoid deterioration in the food system itself or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative technologies such as electrospaying and electrospinning have received increasing attention. This review presents the principles of electrohydrodynamic processes for the production of nano-microstructures (NMSs) containing bioactive compounds. It provides an overview of the current use of this technology for encapsulation of bioactive compounds and discusses the future potential of the technology. Finally, the review discusses advanced microscopy techniques to study the morphology of NMSs.