Untangling the mechanism of 3-methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3-methyladenine - DTU Orbit (16/12/2018)

Untangling the mechanism of 3-methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3-methyladenine

3-Methyladenine (3-MA) is a chemical additive that enhances the specific productivity (q_p) in recombinant Chinese hamster ovary (rCHO) cell lines. Different from its widely known function of inhibiting autophagy, 3-MA has instead shown to increase autophagic flux in various rCHO cell lines. Thus, the mechanism by which 3-MA enhances the q_p requires investigation. To evaluate the effect of 3-MA on transcriptome dynamics in rCHO cells, RNA-seq was performed with Fc-fusion protein–producing rCHO cells treated with 3-MA. By analyzing genes that were differentially expressed following the addition of 3-MA during culture, the role of 3-MA in the biological processes of rCHO cells was identified. One pathway markedly influenced by the addition of 3-MA was the unfolded protein response (UPR). Having a close relationship with autophagy, the UPR reestablishes protein-folding homeostasis under endoplasmic reticulum (ER) stress. The addition of 3-MA increased the expression of key regulators of the UPR, such as $Atf4$, $Ddit3$, and $Creb3l3$, further supporting the idea that the enhancement of ER capacity acts as a key in increasing the q_p. Consequently, the downstream effectors of UPR, which include autophagy-promoting genes, were upregulated as well. Hence, the role of 3-MA in increasing UPR pathway could have made a salient contribution to the increased autophagic flux in rCHO cells. Taken together, transcriptome analysis improved the understanding of the role of 3-MA in gene expression dynamics in rCHO cells and its mechanism in enhancing the q_p.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, CHO Cell Line Engineering and Design, Korean Advanced Institute of Science and Technology (KAIST)
Contributors: Baek, E., Lee, J. S., Min Lee, G.
Pages: 2243-2254
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Biotechnology and Bioengineering
Volume: 115
Issue number: 9
ISSN (Print): 0006-3592
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.07 SJR 1.372 SNIP 1.186
Web of Science (2017): Impact factor 3.952
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.14 SJR 1.447 SNIP 1.178
Web of Science (2016): Impact factor 4.481
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.44 SJR 1.632 SNIP 1.355
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.16 SJR 1.612 SNIP 1.395
Web of Science (2014): Impact factor 4.126
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.44 SJR 1.637 SNIP 1.427
Web of Science (2013): Impact factor 4.164
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2