Ruthenium PNP complex 1a ($\text{RuH(CO)Cl(HN(C_2H_4Pi-Pr_2)_2)}$) represents a state-of-the-art catalyst for low-temperature (<100 °C) aqueous methanol dehydrogenation to H_2 and CO_2. Herein, we describe an investigation that combines experiment, spectroscopy, and theory to provide a mechanistic rationale for this process. During catalysis, the presence of two anionic resting states was revealed, Ru–dihydride (3⁻) and Ru–monohydride (4⁻) that are deprotonated at nitrogen in the pincer ligand backbone. DFT calculations showed that O-- and CH-- coordination modes of methoxide to ruthenium compete, and form complexes 4⁻ and 3⁻, respectively. Not only does the reaction rate increase with increasing KOH, but the ratio of 3⁻/4⁻ increases, demonstrating that the “inner-sphere” C—H cleavage, via C—H coordination of methoxide to Ru, is promoted by base. Protonation of 3⁻ liberates H_2 gas and formaldehyde, the latter of which is rapidly consumed by KOH to give the corresponding gem-diolate and provides the overall driving force for the reaction. Full MeOH reforming is achieved through the corresponding steps that start from the gem-diolate and formate. Theoretical studies into the mechanism of the catalyst Me-1a (N-methylated 1a) revealed that C—H coordination to Ru sets-up C—H cleavage and hydride delivery; a process that is also promoted by base, as observed experimentally. However, in this case, Ru–dihydride Me-3 is much more stable to protonation and can even be observed under neutral conditions. The greater stability of Me-3 rationalizes the lower rates of Me-1a compared to 1a, and also explains why the reaction rate then drops with increasing KOH concentration.

General information
State: Published
Organisations: Department of Chemistry, Centre for Catalysis and Sustainable Chemistry, Organic Chemistry, University of Rostock, CreativeQuantum GmbH
Number of pages: 15
Pages: 14890–14904
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: American Chemical Society. Journal
Volume: 138
Issue number: 45
ISSN (Print): 0002-7863
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.05 SJR 8.127 SNIP 2.641
Web of Science (2017): Impact factor 14.357
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.18 SJR 7.492 SNIP 2.596
Web of Science (2016): Impact factor 13.858
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 12.81 SJR 6.775 SNIP 2.63
Web of Science (2015): Impact factor 13.038
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 11.92 SJR 6.294 SNIP 2.587
Web of Science (2014): Impact factor 12.113
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 11.38 SJR 5.993 SNIP 2.466
Web of Science (2013): Impact factor 11.444