Unmixing of Hyperspectral Images using Bayesian Non-negative Matrix Factorization with Volume Prior

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Hyperspectral imaging can be used in assessing the quality of foods by decomposing the image into constituents such as protein, starch, and water. Observed data can be considered a mixture of underlying characteristic spectra (endmembers), and estimating the constituents and their abundances requires efficient algorithms for spectral unmixing. We present a Bayesian spectral unmixing algorithm employing a volume constraint and propose an inference procedure based on Gibbs sampling. We evaluate the method on synthetic and real hyperspectral data of wheat kernels. Results show that our method perform as good or better than existing volume constrained methods. Further, our method gives credible intervals for the endmembers and abundances, which allows us to asses the confidence of the results.
Original languageEnglish
JournalJournal of Signal Processing Systems
Publication date2011
Volume65
Issue3
Pages479-496
ISSN1939-8018
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • Hyperspectral image analysis, Volume regularization, Bayesian source separation, Gibbs sampling
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6243602