Unilateral Vibro-Impact Systems—Experimental Observations against Theoretical Predictions based on the Coefficient of Restitution - DTU Orbit (17/11/2018)

Unilateral Vibro-Impact Systems—Experimental Observations against Theoretical Predictions based on the Coefficient of Restitution

The vibro-impact response of a single-degree of freedom model with the coefficient of restitution is analyzed using pointwise mapping and a standard averaging combined with non-smooth transformations. Experimental data are taken from a cantilever beam with attached mass and unilateral constraint submitted to different gap configurations and levels of excitation. Numerical simulations are used to reproduce empirical observations to a certain extent and validate theoretical predictions. Investigations on the coefficient of restitution show its dependence on the forcing frequency and pre-contact velocity. The effect of gap variations due to sliding of the constraint during frequency sweep is analyzed experimentally.

General information
State: Published
Organisations: Solid Mechanics, Department of Mechanical Engineering
Contributors: de S. Reboucas, G. F., Santos, I., Thomsen, J. J.
Pages: 346-371
Publication date: 2019
Peer-reviewed: Yes

Publication Information
Journal: Journal of Sound and Vibration
Volume: 440
ISSN (Print): 0022-460X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.2 SJR 1.36 SNIP 2.037
Web of Science (2017): Impact factor 2.618
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.09 SJR 1.459 SNIP 2.236
Web of Science (2016): Impact factor 2.593
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.71 SJR 1.31 SNIP 2.15
Web of Science (2015): Impact factor 2.107
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.54 SJR 1.41 SNIP 2.308
Web of Science (2014): Impact factor 1.813
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.61 SJR 1.32 SNIP 2.553
Web of Science (2013): Impact factor 1.857
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.3 SJR 1.441 SNIP 2.939
Web of Science (2012): Impact factor 1.613
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.05 SJR 1.383 SNIP 2.661
Web of Science (2011): Impact factor 1.588
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.175 SNIP 2.039
Web of Science (2010): Impact factor 1.334
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.34 SNIP 2.147
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.165 SNIP 1.911
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.144 SNIP 1.687
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.888 SNIP 1.628
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.014 SNIP 1.559
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.91 SNIP 1.476
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.216 SNIP 1.392
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.233 SNIP 1.27
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.825 SNIP 1.339
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.974 SNIP 1.206
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.953 SNIP 1.123

Original language: English
Keywords: Vibro-impact dynamics, Unilateral impact, Kinematic impact, Coefficient of restitution, Vibro-impacting beam, Beam with attached mass

DOIs:
10.1016/j.jsv.2018.10.037
Research output: Research - peer-review ; Journal article – Annual report year: 2019