Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes

Poly(2,20-(m-phenylene)-5,50-bisbenzimidazole) (m-PBI) can dissolve large amounts of aqueous electrolytes to give materials with extraordinary high ion conductivity and the practical applicability has been demonstrated repeatedly in fuel cells, water electrolyzers and as anion conducting component in fuel cell catalyst layers. This work focuses on the chemistry of m-PBI in aqueous potassium hydroxide. Equilibration in aqueous KOH with concentrations of 15e20 wt.% was found to result in ionization of the polymer, causing released intermolecular hydrogen bonding. This allowed for extensive volume swelling, high electrolyte uptake, dramatic plasticization and increase of the ion conductivity for the formed poly(potassium benzimidazolide)-based structure. Further increasing the concentration of the bulk solution to 50 wt.% resulted in dehydration and extensive crystallization of the polymer matrix as evidenced by X-ray diffraction, increased density and enhanced elastic modulus. © 2016 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors
Contributors: Aili, D., Jankova Atanasova, K., Han, J., Bjerrum, N. J., Jensen, J. O., Li, Q.
Number of pages: 7
Pages: 304-310
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Polymer
Volume: 84
ISSN (Print): 0032-3861
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.59 SJR 1.097 SNIP 1.163
Web of Science (2017): Impact factor 3.483
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.77 SJR 1.207 SNIP 1.253
Web of Science (2016): Impact factor 3.684
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.72 SJR 1.144 SNIP 1.277
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.85 SJR 1.326 SNIP 1.613
Web of Science (2014): Impact factor 3.562
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.07 SJR 1.414 SNIP 1.649
Web of Science (2013): Impact factor 3.766
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.74 SJR 1.589 SNIP 1.777
Web of Science (2012): Impact factor 3.379
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.04 SJR 1.623 SNIP 1.797
Web of Science (2011): Impact factor 3.438
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.85 SNIP 1.782
Web of Science (2010): Impact factor 3.829
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2 SNIP 1.698
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.896 SNIP 1.629
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.888 SNIP 1.696
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.826 SNIP 1.624
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.644 SNIP 1.564
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.747 SNIP 1.724
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.603 SNIP 1.601
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.583 SNIP 1.434
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.46 SNIP 1.387
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.314 SNIP 1.38
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.307 SNIP 1.284
Original language: English
Keywords: Polybenzimidazole, Ionomer, Alkaline, Ion-solvation, Electrolyte
Electronic versions:
Post_print_Understanding_ternary_poly_potassium_benzimidazolide_based_polymer_electrolytes.pdf. Embargo ended: 06/01/2018
DOIs:
10.1016/j.polymer.2016.01.011

Bibliographical note
This work was financially supported by the Danish Council for Independent Research, Technology and Production Science (grant number 11-117035/FTP) and DTU Energy
Source: PublicationPreSubmission
Source-ID: 120685612
Research output: Research - peer-review ; Journal article – Annual report year: 2016