Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar

Research output: Research - peer-reviewJournal article – Annual report year: 2015

DOI

View graph of relations

Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle-mounted pulsed lidars with two lines of sight (LOS) have already been demonstrated to be suitable for use in power performance measurements. To be considered as a professional tool, however, power curve measurements performed using these instruments require traceable calibrated measurements and the quantification of the wind speed measurement uncertainty. Here we present and demonstrate a procedure fulfilling these needs. A nacelle lidar went through a comprehensive calibration procedure. This calibration took place in two stages. First with the lidar on the ground, the tilt and roll readings of the inclinometers in the nacelle lidar were calibrated. Then the lidar was installed on a 9m high platform in order to calibrate the wind speed measurement. The lidar’s radial wind speed measurement along each LOS was compared with the wind speed measured by a calibrated cup anemometer, projected along the LOS direction. The various sources of uncertainty in the lidar wind speed measurement have been thoroughly determined: uncertainty of the reference anemometer, the horizontal and vertical positioning of the beam, the lack of homogeneity of the flow within the probe volume, lidar measurement mean deviation and standard uncertainty. The resulting uncertainty lies between 1 and 2% for the wind speed range between cut-in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast-top mounted cup anemometer placed two rotor diameters upwind of the turbine. The wind speed uncertainty related to the lidar tilting was calculated based on the tilt angle uncertainty derived from the inclinometer calibration and the deviation of the measurement height from hub height. The resulting combined uncertainty in the power curve using the nacelle lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd.
Original languageEnglish
JournalWind Energy
Volume19
Pages (from-to)1269–1287
ISSN1095-4244
DOIs
StatePublished - 2015
CitationsWeb of Science® Times Cited: 2

    Research areas

  • Wind speed measurement, Lidar calibration, Measurement height
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 117723100