Ultrafiltration by gyroid nanoporous polymer membranes

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Gyroid nanoporous cross-linked 1,2-polybutadiene membranes with uniform pores were developed for ultrafiltration applications. The gyroid porosity has the advantage of isotropic percolation with no need for structure pre-alignment. The effects of solvent and surface photo-hydrophilization on permeation and molecular weight cut-off were investigated. Gas permeation followed the Knudsen diffusion scheme, while water flux across the originally hydrophobic membrane could be described by a generalized Hagen–Poiseuille equation. A series of PEGs of different molecular weights were used to explore the effect of membrane fouling on the flux decline and rejection profiles. Significant fouling occurred in the case of hydrophobic membranes in contact with water solutions, while in the presence of high concentration of ethanol in the filtration solution and in the case of hydrophilized membranes the fouling was reduced. The observed rejection of PEG was compared with theoretic predictions, as described by the Bungay–Brenner model. The model satisfactorily described the rejection profile of PEG up to 12kg/mol through hydrophobic membranes in the presence of excess ethanol. A significantly reduced rejection relative to model expectation was found for the hydrophobic membrane in water. For the hydrophilized membrane a sharp increase in rejection from 1kg/mol to 4kg/mol was observed, which only in part could be captured by the model.
Original languageEnglish
JournalJournal of Membrane Science
Publication date2011
Volume384
Issue1-2
Pages126-135
ISSN0376-7388
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 7

Keywords

  • Fouling, Ultrafiltration, Nanoporous membranes, Gyroid, Adsorption, Block copolymers
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5836607