Ultra Fast and Parsimonious Materials Screening for Polymer Solar Cells Using Differentially Pumped Slot-Die Coating

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

We present a technique that enables the probing of the entire parameter space for each parameter with good statistics through a simple roll-to-roll processing method where gradients of donor, acceptor, and solvent are applied by differentially pumped slot-die coating. We thus demonstrate how the optimum donor−acceptor ratio and device film thickness can be determined with improved accuracy by varying the composition in small steps. We give as an example P3HT-PCBM devices and vary the composition between P3HT and PCBM in steps of 0.5−1% giving 100−200 individual solar cells. The coating experiment itself takes less than 4−8 min and requires 15−30 mg each of donor and acceptor material. The optimum donor−acceptor composition of P3HT and PCBM was found to be a broad maximum centered on a 1:1 ratio. We demonstrate how the optimal thickness of the active layer can be found by the same method and materials usage by variation of the layer thickness in small steps of 1.5−4 nm. Contrary to expectation we did not find oscillatory variation of the device performance with device thickness because of optical interference. We ascribe this to the nature of the solar cell type explored in this example that employs nonreflective or semitransparent printed electrodes. We further found that very thick active layers on the order of 1 μm can be prepared without loss in performance and estimate the active layer thickness could easily approach 4−5 μm while maintaining photovoltaic properties.
Original languageEnglish
JournalA C S Applied Materials and Interfaces
Publication date2010
Volume2
Issue10
Pages2819-2827
ISSN1944-8244
DOIs
StatePublished

Bibliographical note

This work was supported
by the Danish Strategic Research Council (DSF 2104-
05-0052 and 2104-07-0022) and EUDP (j. nr. 64009-0050).
A patent application covering the inventions described in this
article has been filed.

CitationsWeb of Science® Times Cited: 108

Keywords

  • Polymer solar cells, Solar energy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5025285