Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: A computational screening approach

We explore the possibilities of hydrogen evolution by basal planes of 2D metal dichalcogenides and oxides in the 2H and 1T class of structures using the hydrogen binding energy as a computational activity descriptor. For some groups of systems like the Ti, Zr, and Hf dichalcogenides the hydrogen bonding to the 2H structure is stronger than that to the 1T structure, while for the Cr, Mo, and W dichalcogenides the behavior is opposite. This is rationalized by investigating shifts in the chalcogenide p levels comparing the two structures. We find that usually for a given material only at most one of the two phases will be active for the hydrogen evolution reaction; however, in most cases the two phases are very close in formation energy, opening up the possibility for stabilizing the active phase. The study points to many new possible 2D HER materials beyond the few that are already known.

General information
State: Published
Organisations: Center for Atomic-scale Materials Design, Department of Physics, Center for Nanostructured Graphene, SLAC National Accelerator Laboratory
Number of pages: 59
Pages: 1527-1585
Publication date: 2015
Main Research Area: Technical/natural sciences

Publication information
Journal: The Journal of Physical Chemistry Letters
Volume: 6
Issue number: 9
ISSN (Print): 1948-7185
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.18 SJR 4.583 SNIP 1.68
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 4.233 SNIP 1.829 CiteScore 8.04
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 3.722 SNIP 1.724 CiteScore 7
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 3.515 SNIP 1.61 CiteScore 6.61
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 3.943 SNIP 1.751 CiteScore 6.3
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 3.244 SNIP 1.602 CiteScore 5.95
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Indexed yes
Web of Science (2009): Indexed yes
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes