The concept of metamaterials (MTMs) is acknowledged for providing new horizons for controlling electromagnetic radiations thus their use in frequency ranges otherwise difficult to manage (e.g. THz radiation) broadens our possibility to better understand our world as well as opens the path for new applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1 THz for TE polarized light while the TM waves have almost 80% field transmission peak at 0.6 THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper.