Deficits in information processing and cognition are among the most robust findings in schizophrenia patients. Previous efforts to translate group-level deficits into clinically relevant and individualized information have, however, been non-successful, which is possibly explained by biologically different disease subgroups. We applied machine learning algorithms on measures of electrophysiology and cognition to identify potential subgroups of schizophrenia. Next, we explored subgroup differences regarding treatment response. Sixty-six antipsychotic-naive first-episode schizophrenia patients and sixty-five healthy controls underwent extensive electrophysiological and neurocognitive test batteries.

Patients were assessed on the Positive and Negative Syndrome Scale (PANSS) before and after 6 weeks of monotherapy with the relatively selective D2 receptor antagonist, amisulpride (280.3±159 mg per day). A reduced principal component space based on 19 electrophysiological variables and 26 cognitive variables was used as input for a Gaussian mixture model to identify subgroups of patients. With support vector machines, we explored the relation between PANSS subscores and the identified subgroups. We identified two statistically distinct subgroups of patients. We found no significant baseline psychopathological differences between these subgroups, but the effect of treatment in the groups was predicted with an accuracy of 74.3% (P=0.003). In conclusion, electrophysiology and cognition data may be used to classify subgroups of schizophrenia patients. The two distinct subgroups, which we identified, were psychopathologically inseparable before treatment, yet their response to dopaminergic blockade was predicted with significant accuracy. This proof of principle encourages further endeavors to apply data-driven, multivariate and multimodal models to facilitate progress from symptom-based psychiatry toward individualized treatment regimens.

General information
State: Published
Organisations: Copenhagen Center for Health Technology, Department of Applied Mathematics and Computer Science, Cognitive Systems, University of Copenhagen
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Translational Psychiatry
Volume: 7
Issue number: 4
Article number: e1087
ISSN (Print): 2158-3188
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.86 SJR 2.495 SNIP 1.147
Web of Science (2017): Impact factor 4.691
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.38 SJR 2.84 SNIP 1.007
Web of Science (2016): Impact factor 4.73
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 5.61 SJR 3.169 SNIP 1.273
Web of Science (2015): Impact factor 5.538
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 5.74 SJR 3.189 SNIP 1.31
Web of Science (2014): Impact factor 5.62
Scopus rating (2013): CiteScore 4.54 SJR 2.206 SNIP 1.18
Web of Science (2013): Impact factor 4.36
Scopus rating (2012): CiteScore 1.95 SJR 0.718 SNIP 0.479
Original language: English
Electronic versions:
tp201759a.pdf
DOIs:
10.1038/tp.2017.59
Source: FindIt
Source-ID: 2356507784