Two discrete vortex method for application to bluff body aerodynamics

Two-dimensional viscous incompressible flow past a flat plate of finite thickness and length is simulated using the discrete vortex method. Both a fixed plate and a plate undergoing a harmonic heave and pitch motion are studied. The Reynolds number is 104 and the reduced onset flow speed, U/f_c is in the range 2-14. The fundamental kinematic relation between the velocity and the vorticity is used in a novel approach to determine the surface vorticity. An efficient influence matrix technique is used in a fast adaptive multipole algorithm context to obtain a mesh-free method. The numerical results are compared with the steady-state Blasius solution, and with the inviscid solution for the flow past an oscillating plate by Theodorsen.

General information
State: Published
Organisations: COWI AS, Danish Maritime Institute
Contributors: Walther, J. H., Larsen, A.
Pages: 183-193
Publication date: 1997
Peer-reviewed: Yes

Publication information
Journal: Journal of Wind Engineering & Industrial Aerodynamics
Volume: 67-68
ISSN (Print): 0167-6105
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.42 SJR 1.264 SNIP 2.071
Web of Science (2017): Impact factor 2.689
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.61 SJR 0.992 SNIP 1.929
Web of Science (2016): Impact factor 2.049
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.51 SJR 0.976 SNIP 1.939
Web of Science (2015): Impact factor 2.024
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.13 SJR 0.902 SNIP 2.282
Web of Science (2014): Impact factor 1.414
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.43 SJR 0.8 SNIP 2.68
Web of Science (2013): Impact factor 1.698
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.81 SJR 0.642 SNIP 2.431
Web of Science (2012): Impact factor 1.342
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.3 SJR 0.902 SNIP 3.236
Web of Science (2011): Impact factor 1.119
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes