Tunneling of an energy eigenstate through a parabolic barrier viewed from Wigner phase space

We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function.

General information
State: Published
Organisations: Department of Chemistry, Ulm University, Air Force Research Laboratory, Hungarian Academy of Sciences
Pages: 1822-1825
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Physics Letters A
Volume: 377
Issue number: 31-33
ISSN (Print): 0375-9601
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.86 SJR 0.595 SNIP 1.002
Web of Science (2017): Impact factor 1.863
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.69 SJR 0.773 SNIP 0.909
Web of Science (2016): Impact factor 1.772
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.74 SJR 0.663 SNIP 0.975
Web of Science (2015): Impact factor 1.677
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.71 SJR 0.684 SNIP 0.975
Web of Science (2014): Impact factor 1.683
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.77 SJR 0.621 SNIP 1.037
Web of Science (2013): Impact factor 1.626
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.91 SJR 0.787 SNIP 1.142
Web of Science (2012): Impact factor 1.766
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.97 SJR 0.864 SNIP 1.168
Web of Science (2011): Impact factor 1.632
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.932 SNIP 1.106