Tuning the Magnetic Properties of LixCrTi0.25Se2 (0.03≤x≤0.7) by Directed Deintercalation of Lithium

Publication: Research - peer-reviewJournal article – Annual report year: 2008

Without internal affiliation

  • Author: Behrens, Malte

    Institut für Anorganische Chemie, University of Kiel, Olshausenstrasse 40–60, 24098 Kiel, Germany, Fax: (+49) 341-880-1520

  • Author: Wontcheu, Joseph

    Institut für Anorganische Chemie, University of Kiel, Olshausenstrasse 40–60, 24098 Kiel, Germany, Fax: (+49) 341-880-1520

  • Author: Kiebach, Wolff-Ragnar

    Unknown

  • Author: Bensch, Wolfgang

    Institut für Anorganische Chemie, University of Kiel, Olshausenstrasse 40–60, 24098 Kiel, Germany, Fax: (+49) 341-880-1520

View graph of relations

X-ray diffraction (XRD), in situ energy-dispersive X-ray diffraction (EDXRD), X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and magnetic measurements were applied to investigate the effects of lithium deintercalation on pseudolayered Li0.70CrTi0.25Se2. A detailed picture of structural changes during the deintercalation process was obtained by combining the results of EDXRD and EXAFS. Removal of Li from the host–guest complex leads to anisotropic contraction of the unit cell with stronger impact on the c axis, which is the stacking axis of the layers. The EDXRD experiments evidence that the shrinkage of the lattice parameters with decreasing xLi in LixCrTi0.25Se2 is nonlinear in the beginning and then becomes linear. Analysis of the EXAFS spectra clearly shows that the Cr/Ti—Se distances are affected in a different manner by Li removal. The Cr—Se bond lengths decrease, whereas the Ti—Se bonds lengthen when the Li content is reduced, which is consistent with XRD data. Magnetic measurements reveal a change from predominantly antiferromagnetic exchange (θp=−300 K) interactions for the pristine material to ferromagnetic exchange interactions (θ=25 K) for the fully intercalated material. Thus, the magnetic properties can be altered under ambient conditions by directed adjustment of the dominant magnetic exchange. The unusual magnetic behavior can be explained on the basis of the variation of the metal–metal distances and the Cr-Se-Cr angles with x, which were determined by Rietveld refinements. Owing to competing ferromagnetic and antiferromagnetic exchange interactions and disorder, the magnetic ground state of the intercalated materials is characterized by spin-glass or spin-glass-like behavior.
Original languageEnglish
JournalChemistry - A European Journal
Publication date2008
Volume14
Issue16
Pages5021-5029
ISSN0947-6539
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 6
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6322604