Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface alloying - DTU Orbit (07/01/2019)

Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔE_{OH}, were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu into Pt(111) resulted in an 8-fold improvement in oxygen reduction activity. The most optimal catalyst for oxygen reduction has an $\Delta E_{\text{OH}} \approx 0.1$ eV weaker than that of pure Pt, validating earlier theoretical predictions.

General information
State: Published
Organisations: Experimental Surface and Nanomaterials Physics, Department of Physics, Theoretical Atomic-scale Physics
Pages: 5485
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Journal of the American Chemical Society
Volume: 133
Issue number: 14
ISSN (Print): 0002-7863
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.05 SJR 8.127 SNIP 2.641
Web of Science (2017): Impact factor 14.357
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.18 SJR 7.492 SNIP 2.596
Web of Science (2016): Impact factor 13.858
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 12.81 SJR 6.775 SNIP 2.63
Web of Science (2015): Impact factor 13.038
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 11.92 SJR 6.294 SNIP 2.587
Web of Science (2014): Impact factor 12.113
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 11.38 SJR 5.993 SNIP 2.466
Web of Science (2013): Impact factor 11.444
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 10.37 SJR 6.211 SNIP 2.38
Web of Science (2012): Impact factor 10.677
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 9.94 SJR 5.478 SNIP 2.321