Tuning of Controller for Type 1 Diabetes Treatment with Stochastic Differential Equations

Publication: Research - peer-reviewArticle in proceedings – Annual report year: 2012

Documents

DOI

View graph of relations

People with type 1 diabetes need several insulin injections every day to keep their blood glucose level in the normal range and thereby avoiding the acute and long term complications of diabetes. One of the recent treatments consists of a pump injecting insulin into the subcutaneous layer combined with a continuous glucose monitor (CGM) frequently observing the glucose level. Automatic control of the insulin pump based on CGM observations would ease the burden of constant diabetes treatment and management. We have developed a controller designed to keep the blood glucose level in the normal range by adjusting the size of insulin infusions from the pump based on model predictive control (MPC). A clinical pilot study to test the performance of the MPC controller overnight was performed. The conclusion was that the controller relied too much on the local trend of the blood glucose level which is a problem due to the noise corrupted observations from the CGM. In this paper we present a method to estimate the optimal Kalman gain in the controller based on stochastic differential equation modeling. With this model type we could estimate the process noise and observation noise separately based on data from the rst clinical pilot study. In doing so we obtained a more robust control algorithm which is less sensitive to
fluctuations in the CGM observations and rely more on the global physiological trend of the blood glucose level. Finally, we present the promising results from the second pilot study testing the improved controller.
Original languageEnglish
Title of host publicationBiological and Medical Systems
Volume8
Publication date2012
Pages46-51
ISBN (print)978-3-902823-10-6
DOIs
StatePublished

Conference

Conference8th IFAC Symposium on Biological and Medical Systems
CountryHungary
CityBudapest
Period29/08/1231/08/12
Internet addresshttp://bms.iit.bme.hu/
NameIFAC Proceedings Volumes (IFAC-PapersOnline)
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 12142188