Trypsin encoding PRSS1-PRSS2 variation influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report - DTU Orbit (14/03/2019)

Trypsin encoding PRSS1-PRSS2 variation influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report

Asparaginase-associated pancreatitis is a life-threatening toxicity to childhood acute lymphoblastic leukemia treatment. To elucidate genetic predisposition and asparaginase-associated pancreatitis pathogenesis, ten acute lymphoblastic leukemia trial groups contributed remission samples from patients aged 1.0-17.9 years and treated from 2000-2016. Cases were defined (n=244) by at least two of the following criteria: i) abdominal pain, ii) pancreatic enzymes >3 x upper normal limit, iii) imaging compatible with asparaginase-associated pancreatitis. Controls (n=1320) completed intended asparaginase therapy, 78% receiving ≥8 pegylated-asparaginase injections, without developing asparaginase-associated pancreatitis. rs62228256 on 20q13.2 showed the strongest association (OR=3.75; P=5.2x10^-8). Moreover, rs13228878 (OR=0.61; P=7.1x10^-5) and rs10273639 (OR=0.62; P=1.1x10^-5) on 7q34 showed significant association. A Dana Farber Cancer Institute ALL Consortium cohort consisting of patients treated protocols from 1987-2004 (controls=285, cases=33), and the Children's Oncology Group AALL0232 cohort (controls=2653, cases=76) were available as replication cohorts for the 20q13.2 and 7q34 variants, respectively. While rs62228256 was not validated (P=0.86), both rs13228878 (P=0.03) and rs10273639 (P=0.04) were. rs13228878 and rs10273639 are in high linkage disequilibrium (r^2=0.94) and associated with elevated expression of the trypsinogen encoding PRSS1 gene and are known risk variants for alcohol-associated and sporadic pancreatitis in adults. Intra-pancreatic trypsinogen cleavage to proteolytic trypsin induces autodigestion and pancreatitis. Asparaginase-associated pancreatitis and non-asparaginase associated pancreatitis shares genetic predisposition and targeting the trypsinogen activation pathway may enable identification of effective interventions towards asparaginase-associated pancreatitis.

General information
State: Published
Organisations: Department of Health Technology, St Jude Children's Research Hospital, Righospitalet , Harvard Medical School, University of Montreal, Medical University of Vienna, Tel Aviv University, University of Milan - Bicocca, University Medical Center Hamburg-Eppendorf, Maine Children's Cancer Program, Mackay Memorial Hospital Taiwan, Christian Albrechts University of Kiel, Great Ormond Street Hospital for Children, Boston Children's Hospital, Erasmus MC University Medical Center, Hannover Medical School, University Hospital Motol
Number of pages: 8
Pages: 556-563
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Haematologica
Volume: 104
Issue number: 3
ISSN (Print): 0390-6078
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.28 SJR 3.063 SNIP 1.658
Web of Science (2017): Impact factor 9.09
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.1 SJR 2.821 SNIP 1.703
Web of Science (2016): Impact factor 7.702
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.22 SJR 2.959 SNIP 1.793
BFI (2014): BFI-level 1