Transverse correlation: An efficient transverse flow estimator - initial results

Publication: ResearchArticle in proceedings – Annual report year: 2008

Documents

DOI

NullPointerException

View graph of relations

Color flow mapping has become an important clinical tool, for diagnosing a wide range of vascular diseases. Only the velocity component along the ultrasonic beam is estimated, so to find the actual blood velocity, the beam to flow angle has to be known. Because of the unpredictable nature of vascular hemodynamics, the flow angle cannot easily be found as the angle is temporally and spatially variant. Additionally the precision of traditional methods is severely lowered for high flow angles, and they breakdown for a purely transverse flow. To overcome these problems we propose a new method for estimating the transverse velocity component. The method measures the transverse velocity component by estimating the transit time of the blood between two parallel lines beamformed in receive. The method has been investigated using simulations performed with Field II. Using 15 emissions per estimate, a standard deviation of 1.64% and a bias of 1.13% are obtained for a beam to flow angle of 90 degrees. Using the same setup a standard deviation of 2.21% and a bias of 1.07% are obtained for a beam to flow angle of 75 degrees. Using 20 emissions a standard deviation of 3.4% and a bias of 2.06% are obtained at 45 degrees. The method performs stable down to a signal-to-noise ratio of 0 dB, where a standard deviation of 5.5% and a bias of 1.2% is achieved.
Original languageEnglish
Title2008 IEEE Ultrasonics Symposium
Volume1-4
PublisherIEEE
Publication date2008
Pages1619-1622
ISBN (print)978-1-4244-2428-3
DOIs
StatePublished

Conference

Conference2008 IEEE International Ultrasonics Symposium
CountryChina
CityBeijing
Period02/11/0805/11/08
Internet addresshttp://ewh.ieee.org/conf/ius_2008/
NameI E E E International Ultrasonics Symposium. Proceedings
ISSN (Print)1051-0117

Bibliographical note

Copyright: 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4085779