Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM specimen preparation method are listed for other samples.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Imaging and Structural Analysis, Ceramic Engineering & Science, Mixed Conductors
Pages: 501-505
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Microscopy and Microanalysis
Volume: 19
Issue number: 2
ISSN (Print): 1431-9276
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.49 SJR 0.292 SNIP 0.275
Web of Science (2017): Impact factor 2.124
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.5 SJR 0.31 SNIP 0.279
Web of Science (2016): Impact factor 1.891
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.57 SJR 0.311 SNIP 0.195
Web of Science (2015): Impact factor 1.73
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.41 SJR 0.301 SNIP 0.46
Web of Science (2014): Impact factor 1.872
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.55 SJR 0.286 SNIP 0.279
Web of Science (2013): Impact factor 2.161
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.52 SJR 0.327 SNIP 0.408
Web of Science (2012): Impact factor 2.495
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.32 SJR 0.286 SNIP 0.168
Web of Science (2011): Impact factor 3.007
ISI indexed (2011): ISI indexed yes