Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are found to be negative and constant in this temperature region and with the numerical values decreasing slightly from TbF3 to DyF3. The anisotropic interactions, when the point dipole contributions are subtracted, are found to be substantially smaller and about equal for the two materials. The crystals contain two symmetry related magnetic sublattices A and B, contributing to the macroscopic susceptibility. The sublattice susceptibility has an off-diagonal component \(\gamma_{ac}^A \) and \(\gamma_{ac}^B = -\gamma_{ac}^A \) in the crystalline axes system. The orientations of the principal axes of the two sublattice susceptibilities are found to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements.

General information

State: Published
Organisations: Department of Physics, Technical University of Denmark
Contributors: Hansen, P. E., Nevald, R., Guggenheim, H. G.
Pages: 2866-2876
Publication date: 1978
Peer-reviewed: Yes

Publication information

Journal: Physical Review B
Volume: 17
Issue number: 7
ISSN (Print): 2469-9950
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774
Web of Science (2010): Indexed yes